

Characterization of Cloud-Cleared Radiances

Evan Fishbein Luke Chen JPL

Theoretical Basis for Cloud-Clearing

- Predict clear radiances from microwave radiances
- Estimate cloud fractions from cloudyclear radiance residuals (predictor radiances)
- Extrapolate all radiances to clear conditions

3 Study Footprints Presented

- Footprint identified clear using clearsky discriminants, and almost clear by retrieval
- 2. Footprint identified clear by retrieval, but cloudy by discriminants
 - Contamination by stratocumulus
- 3. Footprint identified as cloudy
 - Contaminated by tropical cumulus

Cloud-Free Region

- 6 September 2003
- G/S/F: 26/10/39
 (Granule/Scanline/Footprint)
- Noise Amplification Factor (NaF) 1.28
- LW Coherency: 0.05K
- LW SST Pred Err: 0.26K

Cloud-Cleared

CC and Observed are within 0.2K in these surface channels.

CC and ECMWF-calculated are within 0.2K in these surface channels

Cloud-Cleared – Calc(ECMWF)

Map radiances onto pressure using P centroid of weighting functions. Smoothed differences shown by line (method is dubious near surface)

Cloud-Cleared - Calculated

CC Radiances calculated from retrieved

State, Retrieval Type 0
D/G/S/F/T/V: 2002-09-06 026 010 39 Focus3a v3.1.9.0
D/G/S/F/T/V: 2002-09-06 026 010 39 Focus3a v3.1.9.0
CC - Calc(AIRS)

Cloud-Cleared - Observed

 Cloud-cleared radiances are biased cold in lower troposphere, but should always be warmer than Obs.

D/G/S/F/T/V: 2002-09-06 026 010 39 Focus3a v3.1.9.0 CC - Obs

Radiance Residual-Retrieved Solution

- Radiances derived from solution agree with observations through out most of the troposphere
- Poorer agreement near surface and in stratosphere.

Footprint Diagnosed Clear by

Cloudy Region Flagged Clear

Retrieval Set contains both G/S/F: 68/12/66 and 68/10/65 (Night)

(Coherency employs moving window) Freq=2616.38 cm⁻¹ (Ch 2333) 20020906 G-68

-8 -8 -80 -12 -76 -72

-10

CC - Calc(ECMWF)

Low Stratocumulus
Coast of Peru

Radiance Comparison with ECMWF

Observed and Cloud-cleared radiances are the same

Difference with ECMWF shows spectra signature of water clouds

Consistency of Cloud-cleared and Fitted Radiances

Effects of Stratocumulus

- Radiances contain information not used by retrieval
- Signature of liquid water clouds
- Radiance difference, indicative of noise does not show noise attenuation from radiance averaging (NaF = 0.33)
- Fit to radiances within 1K in 1 km layers

Tropical Cumulus

Tropical Western Pacific

• GSF: 27/46/53

• 12.26 ° N, 161.7° E

NaF: 3.1

Leading edge of squall

Cloud-cleared - Calc

(ECMWF)

Cloud-cleared - Obs

D/G/S/F/T/V: 2002-09-06 027 046 53 Focus3a v3.1.9.0 CC - Obs

Cloud-cleared - Calc(Retrieval)

Retrieval in the Presence of Tropical Cumulus

- Cloud correction is positive
 - i.e. clouds are cold
- Improved closure between fitted and cloud-cleared radiances

Weighting Function

Temperature-Sounding Lower Troposphere

Spatial Variability

Tropical Humidity

Weighting Function

Water Vapor-Sounding Upper Troposphere

Upper-Trop Water Sounding Channel

Freq=1557.48 cm⁻¹ (Ch 1785) 20020906 G-27

Water Vapor Spatial Variability

- Water vapor CC radiance shows greater variability then temperature
- Increases mixing ratio uplifts the 0.01 column water vapor surface,
 - 1557 cm⁻¹ radiances is cooler
- Variability is correlated with clouds, but
- Radiance is consistent with:
 - vertical transport in squall
 - subsidence forward of squall

Conclusions

- Algorithms have difficulty detecting low clouds (previously known)
- Calculated radiances from solution do not agree with cloud-cleared radiances when low clouds are present
 - Implies more information can be extracted from measurement
- Algorithms appeared to be optimized for high clouds, e.g. tropical cumulus
- Mid through upper tropospheric cloud-cleared water vapor radiances show variability consistent with dynamics